Segmentasi Siswa Berdasarkan Capaian Literasi dan Numerik Menggunakan Teknik Clustering
Main Article Content
Abstract
The Competency-Based National Assessment (CBNA) aims to measure students' basic competencies in literacy and numeracy as the foundation for learning at various levels of education. However, assessment results often show significant variations due to factors such as learning environment, teaching methods and socio-economic background, making it difficult for schools to design effective learning strategies. This study aims to map students based on literacy and numeracy achievement using clustering techniques with K-Means and Spectral Clustering algorithms. The data used is the 2023 National Assessment Public Report Card for SMA/SMK/MA/MAK levels. The analysis process includes pre-processing, exploratory analysis, application of clustering algorithm, and evaluation using Silhouette coefficient. The results showed that the K-Means algorithm with two clusters performed better (Silhouette coefficient 0.1901) than Spectral Clustering (-0.2218). The first cluster grouped students with low literacy and numeracy attainment, while the second cluster included students with higher attainment.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Ang, J., Mirzal, A., & Haron, H. (2015). Spectral clustering on gene expression profile to identify cancer types or subtypes. Jurnal Teknologi, 76, 289–297. https://doi.org/10.11113/jt.v76.4036
Cholissodin, I., & Furqon, M. (2014). Clustering Portal Jurnal Internasional Untuk Rekomendasi Publikasi Berdasarkan Kualitas Cluster Menggunakan Kernel K-Means. 5.
Dewi, S., Defit, S., & Yuhandri, Y. (2021). Akurasi Pemetaan Kelompok Belajar Siswa Menuju Prestasi Menggunakan Metode K-Means. Jurnal Sistim Informasi dan Teknologi, 28–33. https://doi.org/10.37034/jsisfotek.v3i1.40
Frisca, A. (2017). Implementasi spectral clustering pada data microarray gen karsinoma menggunakan algoritma K-means = The implementation of spectral clustering on microarray data on carcinoma genes using K-means algorithm. Universitas Indonesia Library; Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia. https://lib.ui.ac.id
Hatta, M. S., Azmi, F., & Setianingsih, C. (2021). Clustering Pada Data Sentimen Penggunaan Transportasi Online Menggunakan Algoritma Spectral Clustering. eProceedings of Engineering, 8(6). https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/16916
Indahri, Y. (2021). Asesmen Nasional sebagai Pilihan Evaluasi Sistem Pendidikan Nasional. Aspirasi: Jurnal Masalah-masalah Sosial, 12(2), Article 2. https://doi.org/10.46807/aspirasi.v12i2.2364
Martiyono, Sulastini, R., & Handajani, S. (2021). Asesmen Kompetensi Minimal (AKM) dalam Mewujudkan Sekolah Efektif di SMP Negeri 1 Kebumen—Kabupaten Kebumen Perspektif Manajemen Kurikulum dan Sistem Penilaian. Cakrawala : Jurnal Kajian Studi Manajemen Pendidikan Islam Dan Studi Sosial, 5(2), 276–294. https://doi.org/10.33507/cakrawala.v5i2.397
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7
Zhao, Y., & Zhou, X. (2021). K-means Clustering Algorithm and Its Improvement Research. Journal of Physics: Conference Series, 1873, 012074. https://doi.org/10.1088/1742-6596/1873/1/012074