Geospasial Intelijen Menggunakan Teknologi Satelit untuk Identifikasi Potensi Sumber Daya Energi dan Meningkatkan Keamanan Nasional

Main Article Content

Luwis Surani Haloho
Sukendra Martha
Asep Adang Supriyadi
Annisa Harum Sadewa

Abstract

Geospatial intelligence all activities involved in planning, collecting, processing, analyzing, exploiting, and disseminating spatial information obtained to gain intelligence about the national security or operational environment, and providing visual representation this knowledge. Geospatial intelligence plays important role in disaster monitoring by providing critical insight information that supports disaster risk reduction and management. Addition to monitoring disasters geospatial intelligence indispensable for monitoring natural resources and potential of each geographic area to optimize all natural resources. Last also plays role in law enforcement, for example the sea where sea is monitored and found violations can harm many parties so that the importance of geospatial intelligence is very helpful to various parties of course also for defense, state security. This research is a systematic literature review that explains the role of geospatial intelligence dealing with military and non-military threats, namely Geospatial Information Systems combined with NASA MERRA-2 hourly global wind speed data and DTU Global Wind Atlas that spatially resolved to characterize the potential for onshore wind energy globally in order to optimally obtain the potential for geography in non-military threats, the concept of military operations aims to secure a country's sea by involving various technologies and intelligence to protect rights and resources

Article Details

How to Cite
Haloho, L. S., Martha, S., Adang Supriyadi, A., & Sadewa, A. H. (2024). Geospasial Intelijen Menggunakan Teknologi Satelit untuk Identifikasi Potensi Sumber Daya Energi dan Meningkatkan Keamanan Nasional. Journal on Education, 7(1), 7468 -7481. https://doi.org/10.31004/joe.v7i1.7479
Section
Articles

References

Abdalla, R., & Li, J. (2010). Towards effective application of geospatial technologies for disaster management. International Journal of Applied Earth Observation and Geoinformation, 12(6), 405–407. https://doi.org/10.1016/j.jag.2010.09.003
Andronie, M., Lăzăroiu, G., Iatagan, M., Hurloiu, I., Ștefănescu, R., Dijmărescu, A., & Dijmărescu, I. (2023). Big Data Management Algorithms, Deep Learning-Based Object Detection Technologies, and Geospatial Simulation and Sensor Fusion Tools in the Internet of Robotic Things. ISPRS International Journal of Geo-Information, 12(2). https://doi.org/10.3390/ijgi12020035
Blaabjerg, F., & Ma, K. (2017a). Wind Energy Systems, reviews application of power electronics in wind energy systems. IEEE Power and Energy Society, 105(11), 2116–2131. http://linkinghub.elsevier.com/retrieve/pii/B9780123972705000133
Blaabjerg, F., & Ma, K. (2017b). Wind Energy Systems. Proceedings of the IEEE, 105(11), 2116–2131. https://doi.org/10.1109/JPROC.2017.2695485
Bosch, J., Staffell, I., & Hawkes, A. D. (2017). Temporally-explicit and spatially-resolved global onshore wind energy potentials. Energy, 131, 207–217. https://doi.org/10.1016/j.energy.2017.05.052
Bradbury, K., Saboo, R., Johnson, T. L., Malof, J. M., Devarajan, A., Zhang, W., Collins, L. M., & Newell, R. G. (2016). Distributed solar photovoltaic array location and extent dataset for remote sensing object identification. Scientific Data, 3(December), 1–9. https://doi.org/10.1038/sdata.2016.106
Bueger, C. (2015). What is maritime security? Marine Policy, 53, 159–164. https://doi.org/10.1016/j.marpol.2014.12.005
Butt, M. A. (2015). DEVELOPMENT OF A WEB-BASED COLLABORATIVE PPGIS TO SUPPORT MUNICIPAL PLANNING By.
Dangermond, J., & Goodchild, M. F. (2020). Building geospatial infrastructure. Geo-Spatial Information Science, 23(1), 1–9. https://doi.org/10.1080/10095020.2019.1698274
Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57(August), 0–1. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
Erskine, M. A., Gregg, D. G., Karimi, J., & Scott, J. E. (2015). Geospatial Reasoning Ability: Definition, Measurement and Validation. International Journal of Human-Computer Interaction, 31(6), 402–412. https://doi.org/10.1080/10447318.2015.1034551
Euchner, J. (2018). The Internet of Things. Research Technology Management, 61(5), 10–11. https://doi.org/10.1080/08956308.2018.1495971
Fernandez Arguedas, V., Pallotta, G., & Vespe, M. (2018). Maritime Traffic Networks: From Historical Positioning Data to Unsupervised Maritime Traffic Monitoring. IEEE Transactions on Intelligent Transportation Systems, 19(3), 722–732. https://doi.org/10.1109/TITS.2017.2699635
Fleming, S., Jordan, T., Madden, M., Usery, E. L., & Welch, R. (2009). GIS applications for military operations in coastal zones. ISPRS Journal of Photogrammetry and Remote Sensing, 64(2), 213–222. https://doi.org/10.1016/j.isprsjprs.2008.10.004
Gao, Y., Duo, H., Che, J., Zhao, S., & Zhao, B. (2023). Research on Efficient Indexing of Large-Scale Geospatial Data Based on Multi-Level Geographic Grid. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 10(1-W1-2023), 73–80. https://doi.org/10.5194/isprs-annals-X-1-W1-2023-73-2023
Gao, Y., Lui, J., Liu, Y., Zhai, Z., Che, J., Li, H., Wang, R., & Liu, J. (2023). Research on Natural Resources Spatio-Temporal Big Data Analysis Platform for High Performance Computing. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 48(M-1–2023), 115–121. https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-115-2023
Germond, B. (2015). The geopolitical dimension of maritime security. Marine Policy, 54, 137–142. https://doi.org/10.1016/j.marpol.2014.12.013
Harrison-Atlas, D., Maclaurin, G., & Lantz, E. (2021). Spatially-Explicit Prediction of Capacity Density Advances Geographic Characterization of Wind Power Technical Potential. Energies, 14(12), 3609. https://doi.org/10.3390/en14123609
Ivić, M. (2019). Artificial intelligence and geospatial analysis in disaster management. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(3/W8), 161–166. https://doi.org/10.5194/isprs-archives-XLII-3-W8-161-2019
Jamison, T. (2018). Geospatial intelligence and the U.S. Exploring Expedition (1838–1842): reframing the history of U.S. Naval Intelligence. Intelligence and National Security, 33(5), 705–715. https://doi.org/10.1080/02684527.2018.1442995
Jing, C., Du, M., Li, S., & Liu, S. (2019). Geospatial dashboards for monitoring smart city performance. Sustainability (Switzerland), 11(20). https://doi.org/10.3390/su11205648
Jones, A., Koehler, S., Jerge, M., Graves, M., King, B., Dalrymple, R., Freese, C., & Von Albade, J. (2023). BATMAN: A Brain-like Approach for Tracking Maritime Activity and Nuance. Sensors, 23(5). https://doi.org/10.3390/s23052424
Kumar, D., & Shekhar, S. (2014). Photovoltaic Energy Asessment Using Geospatial Technology. Internation Journal of Scientific & Technology Research, 3(6), 54–60. http://www.ijstr.org/final-print/june2014/Photovoltaic-Energy-Asessment-Using-Geospatial-Technology.pdf.
Lary, D. J., Alavi, A. H., Gandomi, A. H., & Walker, A. L. (2016). Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7(1), 3–10. https://doi.org/10.1016/j.gsf.2015.07.003
Lee, J. G., & Kang, M. (2015). Geospatial Big Data: Challenges and Opportunities. Big Data Research, 2(2), 74–81. https://doi.org/10.1016/j.bdr.2015.01.003
Li, W., & Hsu, C. Y. (2022). GeoAI for Large-Scale Image Analysis and Machine Vision: Recent Progress of Artificial Intelligence in Geography. ISPRS International Journal of Geo-Information, 11(7). https://doi.org/10.3390/ijgi11070385
Li, W., Hsu, C. Y., & Hu, M. (2021). Tobler’s First Law in GeoAI: A Spatially Explicit Deep Learning Model for Terrain Feature Detection under Weak Supervision. Annals of the American Association of Geographers, 111(7), 1887–1905. https://doi.org/10.1080/24694452.2021.1877527
Lim, G. J., Cho, J., Bora, S., Biobaku, T., & Parsaei, H. (2018). Models and computational algorithms for maritime risk analysis: a review. Annals of Operations Research, 271(2), 765–786. https://doi.org/10.1007/s10479-018-2768-4
Meddens, A. J. H., Steen-Adams, M. M., Hudak, A. T., Mauro, F., Byassee, P. M., & Strunk, J. (2022). Specifying geospatial data product characteristics for forest and fuel management applications. Environmental Research Letters, 17(4). https://doi.org/10.1088/1748-9326/ac5ee0
Medina-Lopez, E., McMillan, D., Lazic, J., Hart, E., Zen, S., Angeloudis, A., Bannon, E., Browell, J., Dorling, S., Dorrell, R. M., Forster, R., Old, C., Payne, G. S., Porter, G., Rabaneda, A. S., Sellar, B., Tapoglou, E., Trifonova, N., Woodhouse, I. H., & Zampollo, A. (2021). Satellite data for the offshore renewable energy sector: Synergies and innovation opportunities. Remote Sensing of Environment, 264(May), 112588. https://doi.org/10.1016/j.rse.2021.112588
Mentri ESDM. (2024). Peraturan Menteri Energi Dan Sumber Daya Mineralrepublik Indonesianomor 2 Tahun 2024 Tentang Pembangkit Listrik Tenaga Surya Atap Yang Terhubung Pada Jaringan Tenaga Listrik Pemegang Izin Usaha Penyediaan Tenaga Listrik Untuk Kepentingan Umum. Mentri Energi Dan Sumber Daya Mineral, 2024, 1–35. https://jdih.esdm.go.id/storage/document/Permen ESDM Nomor 2 Tahun 2024.pdf
Merchant, J. (2007). Using geospatial data in geographic education. Journal of Geography, 106(6), 215–216. https://doi.org/10.1080/00221340701863840
Mohammad Bagher, A. (2015). Types of Solar Cells and Application. American Journal of Optics and Photonics, 3(5), 94. https://doi.org/10.11648/j.ajop.20150305.17
Nguyen, D., Vadaine, R., Hajduch, G., Garello, R., & Fablet, R. (2022). GeoTrackNet - A Maritime Anomaly Detector Using Probabilistic Neural Network Representation of AIS Tracks and A Contrario Detection. IEEE Transactions on Intelligent Transportation Systems, 23(6), 5655–5667. https://doi.org/10.1109/TITS.2021.3055614
Pierdicca, R., & Paolanti, M. (2022). GeoAI: a review of artificial intelligence approaches for the interpretation of complex geomatics data. Geoscientific Instrumentation, Methods and Data Systems, 11(1), 195–218. https://doi.org/10.5194/gi-11-195-2022
Ruiz, P., Nijs, W., Tarvydas, D., Sgobbi, A., Zucker, A., Pilli, R., Jonsson, R., Camia, A., Thiel, C., Hoyer-Klick, C., Dalla Longa, F., Kober, T., Badger, J., Volker, P., Elbersen, B. S., Brosowski, A., & Thrän, D. (2019). ENSPRESO - an open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials. Energy Strategy Reviews, 26(October 2018), 100379. https://doi.org/10.1016/j.esr.2019.100379
Salehi, H., & Burgueño, R. (2018). Emerging artificial intelligence methods in structural engineering. In Engineering Structures (Vol. 171, Issue Mi). https://doi.org/10.1016/j.engstruct.2018.05.084
Satapathy, D. R., Katpatal, Y. B., & Wate, S. R. (2008). Application of geospatial technologies for environmental impact assessment: An Indian Scenario. International Journal of Remote Sensing, 29(2), 355–386. https://doi.org/10.1080/01431160701269002
Shahabi, C., Banaei-Kashani, F., Khoshgozaran, A., Nocera, L., & Xing, S. (2010). GeoDec: A Framework to Visualize and Query Geospatial Data for Decision-Making. IEEE Multimedia, 17(3), 14–23. https://doi.org/10.1109/MMUL.2010.5692179
Shahabi, C., Banaei-Kashani, F., Khoshgozaran, A., Nocera, L., & Xing, S. (2019). GeoDec: A Framework to Effectively Visualize and Query Geospatial Data for Decision-Making. IEEE Multimedia, January. https://doi.org/10.1109/MMUL.2010.1
Sharma, M., & Kaur, J. (2019). Disaster Management Using Internet of Things. 211–222. https://doi.org/10.4018/978-1-5225-7432-3.ch012
Sharma, S., & Chaudhary, P. (2023). Machine learning and deep learning. Quantum Computing and Artificial Intelligence: Training Machine and Deep Learning Algorithms on Quantum Computers, 71–84. https://doi.org/10.1515/9783110791402-004
Tandarić, N. (2015). Geospatial Intelligence : A Review of the Discipline in the Global and Croatian Contexts Geoprostorno obavještavanje : osvrt na disciplinu u globalnom i hrvatskom kontekstu. Kartografija i Geoinformacije, 1(23), 38–49. http://kig.kartografija.hr/index.php/kig/article/view/684
Tu, E., Zhang, G., Rachmawati, L., Rajabally, E., & Huang, G. Bin. (2018). Exploiting AIS Data for Intelligent Maritime Navigation: A Comprehensive Survey from Data to Methodology. IEEE Transactions on Intelligent Transportation Systems, 19(5), 1559–1582. https://doi.org/10.1109/TITS.2017.2724551
Veerasamy, N., Moolla, Y., & Dawood, Z. (2022). Application of Geospatial Data in Cyber Security. European Conference on Information Warfare and Security, ECCWS, 2022-June, 305–313. https://doi.org/10.34190/eccws.21.1.447
Vopham, T., Hart, J. E., Laden, F., & Chiang, Y. Y. (2018). Emerging trends in geospatial artificial intelligence (geoAI): Potential applications for environmental epidemiology. Environmental Health: A Global Access Science Source, 17(1), 1–6. https://doi.org/10.1186/s12940-018-0386-x
Wang, H., Lei, Z., Zhang, X., Zhou, B., & Peng, J. (2019). A review of deep learning for renewable energy forecasting. Energy Conversion and Management, 198(July), 111799. https://doi.org/10.1016/j.enconman.2019.111799
Weir, G. E. (2015). The Evolution of Geospatial Intelligence and the National Geospatial-Intelligence Agency. Intelligencer, 21(3), 53–59. www.afio.com
Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The Internet of Things—A survey of topics and trends. Information Systems Frontiers, 17(2), 261–274. https://doi.org/10.1007/s10796-014-9489-2
Xing, H., Chen, J., & Zhou, X. (2015). A geoweb-based tagging system for borderlands data acquisition. ISPRS International Journal of Geo-Information, 4(3), 1530–1548. https://doi.org/10.3390/ijgi4031530
Yusfan, M. A., Supriyadi, A. A., Martha, S., Gultom, R. A. G., & Sakti, S. K. (2021). Geospatial Intelligence (GEOINT) As A National Defense Strategy for Information Overload in Indonesia. International Journal of Engineering Technology and Natural Sciences, 3(2), 56–62. https://doi.org/10.46923/ijets.v3i2.129