Pemanfaatan Teknologi Penginderaan Jauh Pada Geospatial Intelligence Dalam Mencegah Illegal Fishing Untuk Menciptakan Keamanan di Wilayah Perairan Indonesia
Main Article Content
Abstract
Technology has become a necessity in the modern era. The use of remote sensing technology in geospatial intelligence can be an effective solution to detect and prevent illegal fishing activities in Indonesia's maritime areas. This study uses a literature review method by gathering in-depth insights from journals and books. The focus is on remote sensing technology in geospatial intelligence to prevent illegal fishing. The purpose of this research is to examine the role of remote sensing in securing and monitoring Indonesia's maritime areas against illegal fishing. A technology-based approach using satellite imagery can be utilized for early detection and surveillance of maritime areas in Indonesia. Satellite imagery provides spatial and temporal data. The results indicate that the integration of remote sensing technology in geospatial intelligence plays a crucial role in enhancing surveillance capabilities in Indonesia's maritime regions.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Beseng, M. (2021). The Nature and Scope of Illegal, Unreported, and Unregulated Fishing and Fisheries Crime in Cameroon: Implications for Maritime Security. African Security, 14(3). https://doi.org/10.1080/19392206.2021.1982241
Bi, M., Zhang, Z., Guo, X., & Wan, L. (2023). Evaluation of Sustainable Utilization of African Marine Fishery Resources. Fishes, 8(1). https://doi.org/10.3390/fishes8010004
Birchenough, S. E., Cooper, P. A., & Jensen, A. C. (2021). Vessel monitoring systems as a tool for mapping fishing effort for a small inshore fishery operating within a marine protected area. Marine Policy, 124. https://doi.org/10.1016/j.marpol.2020.104325
Calderwood, J., Robert, M., Pawlowski, L., Vermard, Y., Radford, Z., Catchpole, T. L., & Reid, D. G. (2020). Hotspot mapping in the Celtic Sea: An interactive tool using multinational data to optimise fishing practices. Marine Policy, 116. https://doi.org/10.1016/j.marpol.2019.103511
Canonico, G., Buttigieg, P. L., Montes, E., Muller-Karger, F. E., Stepien, C., Wright, D., Benson, A., Helmuth, B., Costello, M., Sousa-Pinto, I., Saeedi, H., Newton, J., Appeltans, W., Bednaršek, N., Bodrossy, L., Best, B. D., Brandt, A., Goodwin, K. D., Iken, K., … Murton, B. (2019). Global observational needs and resources for marine biodiversity. In Frontiers in Marine Science (Vol. 6, Issue JUL). https://doi.org/10.3389/fmars.2019.00367
Chen, X., Xu, Q., & Li, L. (2023). Illegal, Unreported, and Unregulated Fishing Governance in Disputed Maritime Areas: Reflections on the International Legal Obligations of States. Fishes, 8(1). https://doi.org/10.3390/fishes8010036
Clarke, K. C. (2019). Geospatial Intelligence. In International Encyclopedia of Human Geography, Second Edition (Second Edi, Vol. 6). Elsevier. https://doi.org/10.1016/B978-0-08-102295-5.10550-5
Daqamseh, S. T., Al-Fugara, A., Pradhan, B., Al-Oraiqat, A., & Habib, M. (2019). MODIS derived sea surface salinity, temperature, and chlorophyll-a data for potential fish zone mapping: West red sea coastal areas, Saudi Arabia. Sensors (Switzerland), 19(9). https://doi.org/10.3390/s19092069
Desai, R. M., & Shambaugh, G. E. (2021). Measuring the global impact of destructive and illegal fishing on maritime piracy: A spatial analysis. PLoS ONE, 16(2 February). https://doi.org/10.1371/journal.pone.0246835
Donlan, C. J., Wilcox, C., Luque, G. M., & Gelcich, S. (2020). Estimating illegal fishing from enforcement officers. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-69311-5
Duckham, M., Gabela, J., Kealy, A., Khan, M., Legg, J., Moran, B., Rumi, S. K., Salim, F. D., Sharmeen, S., Tao, Y., Trentelman, K., & Vasardani, M. (2022). Explainable spatiotemporal reasoning for geospatial intelligence applications. Transactions in GIS, 26(6). https://doi.org/10.1111/tgis.12939
Farella, G., Tassetti, A. N., Menegon, S., Bocci, M., Ferrà, C., Grati, F., Fadini, A., Giovanardi, O., Fabi, G., Raicevich, S., & Barbanti, A. (2021). Ecosystem-based MSP for enhanced fisheries sustainability: An example from the northern adriatic (Chioggia-Venice and Rovigo, Italy). Sustainability (Switzerland), 13(3). https://doi.org/10.3390/su13031211
Fujii, I., Okochi, Y., & Kawamura, H. (2021). Promoting cooperation of monitoring, control, and surveillance of iuu fishing in the Asia-Pacific. Sustainability (Switzerland), 13(18). https://doi.org/10.3390/su131810231
Galdelli, A., Mancini, A., Ferrà, C., & Tassetti, A. N. (2021). A synergic integration of ais data and sar imagery to monitor fisheries and detect suspicious activities. Sensors, 21(8). https://doi.org/10.3390/s21082756
Haas, B., McGee, J., Fleming, A., & Haward, M. (2020). Factors influencing the performance of regional fisheries management organizations. Marine Policy, 113. https://doi.org/10.1016/j.marpol.2019.103787
Huang, X. R., Huang, G. Z., & Chen, L. B. (2023). A Deep Learning-based ROV Surveillance System for Monitoring Illegal Fishing. GCCE 2023 - 2023 IEEE 12th Global Conference on Consumer Electronics. https://doi.org/10.1109/GCCE59613.2023.10315589
Jacquet, J., & Pauly, D. (2022). Reimagining sustainable fisheries. PLoS Biology, 20(10). https://doi.org/10.1371/journal.pbio.3001829
Janowicz, K., Gao, S., McKenzie, G., Hu, Y., & Bhaduri, B. (2020). GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. In International Journal of Geographical Information Science (Vol. 34, Issue 4). https://doi.org/10.1080/13658816.2019.1684500
Kim, S. W., Kim, D., Lee, Y. K., Lee, I., Lee, S., Kim, J., Kim, K., & Ryu, J. H. (2020). Operational ship monitoring based on multi-platforms (Satellite, UAV, HF Radar, AIS). Korean Journal of Remote Sensing, 36(22). https://doi.org/10.7780/kjrs.2020.36.2.2.12
Kiruba-Sankar, R., Krishnan, P., George, G., Kumar, K. L., Angel, J. R. J., Saravanan, K., & Roy, S. D. (2021). Fisheries governance in the tropical archipelago of Andaman and Nicobar – opinions and strategies for sustainable management. Journal of Coastal Conservation, 25(1). https://doi.org/10.1007/s11852-021-00808-5
Lambon, A., Sagun, E. F., Saet, M., Maranon, Z., & Berlin, S. (2022). FishMAZE: Fish Monitoring and AI-based Zone Evaluation. Nordic Machine Intelligence, 2(2). https://doi.org/10.5617/nmi.9941
Lee, W. C., & Viswanathan, K. K. (2020). Framework for managing illegal, unreported and unregulated fishing in ASEAN. Asian Fisheries Science, 33(1). https://doi.org/10.33997/j.afs.2020.33.1.008
Li, W., & Hsu, C. Y. (2022). GeoAI for Large-Scale Image Analysis and Machine Vision: Recent Progress of Artificial Intelligence in Geography. In ISPRS International Journal of Geo-Information (Vol. 11, Issue 7). https://doi.org/10.3390/ijgi11070385
Liu, H., Xu, X., Chen, X., Li, C., & Wang, M. (2022). Real-Time Ship Tracking under Challenges of Scale Variation and Different Visibility Weather Conditions. Journal of Marine Science and Engineering, 10(3). https://doi.org/10.3390/jmse10030444
Long, T., Widjaja, S., Wirajuda, H., & Juwana, S. (2020). Approaches to combatting illegal, unreported and unregulated fishing. In Nature Food (Vol. 1, Issue 7). https://doi.org/10.1038/s43016-020-0121-y
Mackay, M., Hardesty, B. D., & Wilcox, C. (2020). The Intersection Between Illegal Fishing, Crimes at Sea, and Social Well-Being. In Frontiers in Marine Science (Vol. 7). https://doi.org/10.3389/fmars.2020.589000
Massaquoi, B., Roberts, N. J., & Tian, G. (2021). Marine fishing management towards sustainability in Sierra Leone. International Journal of Sustainable Development and Planning, 16(5). https://doi.org/10.18280/ijsdp.160514
McDonald, G., Wilson, M., Veríssimo, D., Twohey, R., Clemence, M., Apistar, D., Box, S., Butler, P., Cadiz, F. C., Campbell, S. J., Cox, C., Effron, M., Gaines, S., Jakub, R., Mancao, R. H., Rojas, P. T., Tirona, R. S., & Vianna, G. (2020). Catalyzing sustainable fisheries management through behavior change interventions. Conservation Biology, 34(5). https://doi.org/10.1111/cobi.13475
Melnychuk, M. C., Kurota, H., Mace, P. M., Pons, M., Minto, C., Osio, G. C., Jensen, O. P., de Moor, C. L., Parma, A. M., Richard Little, L., Hively, D., Ashbrook, C. E., Baker, N., Amoroso, R. O., Branch, T. A., Anderson, C. M., Szuwalski, C. S., Baum, J. K., McClanahan, T. R., … Hilborn, R. (2021). Identifying management actions that promote sustainable fisheries. Nature Sustainability, 4(5). https://doi.org/10.1038/s41893-020-00668-1
Nahuelhual, L., Saavedra, G., Mellado, M. A., Vergara, X. V., & Vallejos, T. (2020). A social-ecological trap perspective to explain the emergence and persistence of illegal fishing in small-scale fisheries. Maritime Studies, 19(1). https://doi.org/10.1007/s40152-019-00154-1
Okafor-Yarwood, I. (2020). The Cyclical Nature of Maritime Security Threats: Illegal, Unreported, and Unregulated Fishing as a Threat to Human and National Security in the Gulf of Guinea. African Security, 13(2). https://doi.org/10.1080/19392206.2020.1724432
Rada, J. (2019). Smart defence: Joint geospatial support in NATO. GeoScape, 13(2). https://doi.org/10.2478/geosc-2019-0009
Rodofili, E. N., Lecours, V., & LaRue, M. (2022). Remote sensing techniques for automated marine mammals detection: a review of methods and current challenges. In PeerJ (Vol. 10). https://doi.org/10.7717/peerj.13540
Shan, Y., Liu, S., Zhang, Y., Jing, M., & Xu, H. (2021). LMD-TShip∗: Vision Based Large-Scale Maritime Ship Tracking Benchmark for Autonomous Navigation Applications. IEEE Access, 9. https://doi.org/10.1109/ACCESS.2021.3079132
Shi, Y., Long, C., Yang, X., & Deng, M. (2022). Abnormal Ship Behavior Detection Based on AIS Data. Applied Sciences (Switzerland), 12(9). https://doi.org/10.3390/app12094635
Sivasankari, M., Anandan, R., & Chamato, F. A. (2022). HE-DFNETS: A Novel Hybrid Deep Learning Architecture for the Prediction of Potential Fishing Zone Areas in Indian Ocean Using Remote Sensing Images. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/5081541
Song, Y., Kalacska, M., Gašparović, M., Yao, J., & Najibi, N. (2023). Advances in geocomputation and geospatial artificial intelligence (GeoAI) for mapping. In International Journal of Applied Earth Observation and Geoinformation (Vol. 120). https://doi.org/10.1016/j.jag.2023.103300
Syah, A. F., Gaol, J. L., Zainuddin, M., Apriliya, N. R., Berlianty, D., & Mahabrort, D. (2020). Detection of potential fishing zones of Bigeye tuna (Jhunnus obesus) at profundity of 155 M in the eastern Indian Ocean. Indonesian Journal of Geography, 52(1), 29–35. https://doi.org/10.22146/ijg.43708
Syahdan, M., Athmadipoera, A. S., Susilo, S. B., & Gaol, J. L. (2023). Determining the Potential Fishing Zone of Small Pelagic Fishes Based on Spatial and Temporal Variability of Remote Sensing Satellite Data. Egyptian Journal of Aquatic Biology and Fisheries, 27(3). https://doi.org/10.21608/ejabf.2023.306903
Tyasayumranani, W., Hwang, T., Hwang, T., & Youn, I. H. (2022). Anomaly detection model of small-scaled ship for maritime autonomous surface ships’ operation. Journal of International Maritime Safety, Environmental Affairs, and Shipping, 6(4). https://doi.org/10.1080/25725084.2022.2154116
Vince, J., Hardesty, B. D., & Wilcox, C. (2021). Progress and challenges in eliminating illegal fishing. Fish and Fisheries, 22(3). https://doi.org/10.1111/faf.12532
Virdin, J., Vegh, T., Ratcliff, B., Yozell, S., Havice, E., Daly, J., & Stuart, J. (2022). Combatting illegal fishing through transparency initiatives: Lessons learned from comparative analysis of transparency initiatives in seafood, apparel, extractive, and timber supply chains. Marine Policy, 138. https://doi.org/10.1016/j.marpol.2022.104984
Wang, S., Huang, X., Liu, P., Zhang, M., Biljecki, F., Hu, T., Fu, X., Liu, L., Liu, X., Wang, R., Huang, Y., Yan, J., Jiang, J., Chukwu, M., Reza Naghedi, S., Hemmati, M., Shao, Y., Jia, N., Xiao, Z., … Bao, S. (2024). Mapping the landscape and roadmap of geospatial artificial intelligence (GeoAI) in quantitative human geography: An extensive systematic review (Vol. 128). https://doi.org/10.1016/j.jag.2024.103734
Wu, J., Cao, C., Zhou, Y., Zeng, X., Feng, Z., Wu, Q., & Huang, Z. (2021). Multiple ship tracking in remote sensing images using deep learning. Remote Sensing, 13(18). https://doi.org/10.3390/rs13183601
Yusfan, M. A., Supriyadi, A. A., Martha, S., Gultom, R. A. G., & Sakti, S. K. (2021). Geospatial Intelligence (GEOINT) As A National Defense Strategy for Information Overload in Indonesia. International Journal of Engineering Technology and Natural Sciences, 3(2). https://doi.org/10.46923/ijets.v3i2.129
Zhang, L. (2021). Global fisheries management and community interest. Sustainability (Switzerland), 13(15). https://doi.org/10.3390/su13158586
Zhang, W., He, X., Li, W., Zhang, Z., Luo, Y., Su, L., & Wang, P. (2021). A Robust Deep Affinity Network for Multiple Ship Tracking. IEEE Transactions on Instrumentation and Measurement, 70. https://doi.org/10.1109/TIM.2021.3077679
Zhang, Y., Zhang, Z., Tong, X., Ji, S., Yu, Y., & Lai, G. (2021). Progress and challenges of geospatial artificial intelligence. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 50(9). https://doi.org/10.11947/j.AGCS.2021.20200420
Zuzanna, K., Tomasz, U., Michal, G., & Robert, P. (2022). How High-Tech Solutions Support the Fight Against IUU and Ghost Fishing: A Review of Innovative Approaches, Methods, and Trends. In IEEE Access (Vol. 10). https://doi.org/10.1109/ACCESS.2022.3212384