# Penggunaan Teorema Binomial dalam Menentukan Peluang Suatu Kejadian

## Abstract

The theory of opportunity arises from human activity which inspires bettors who try to find information on the chances of winning bets. Scientists who also like to play bets, experts make the theory of probability as a basic study of statistics and conduct mathematical analysis from a review of game examples. In this case, examine the toss of coins. To determine the probability of an event occurring in a coin toss, first calculate the number of sample points using the formula 2n where n is the number of sample spaces. In this case, the concept of the binomial theorem is used to determine the probability of an event occurring in the toss of a coin. The binomial theorem is very helpful in determining the probability of an event. Because it is very easy to determine the probability of an event is very rarely done.

## Article Details

How to Cite
Sianturi, R. (2023). Penggunaan Teorema Binomial dalam Menentukan Peluang Suatu Kejadian. Journal on Education, 5(4), 12922-12936. https://doi.org/10.31004/joe.v5i4.2281
Section
Articles

## References

Al-Baldawi, Z., & Ali Hussein, I. (2021). Estimating the Optimum Completion Time of Project Using Binomial Distribution and Probabilistic PERT Network. In Proceedings of First International Conference on Mathematical Modeling and Computational Science: ICMMCS 2020 (pp. 627–637). Springer. https://doi.org/10.1007/978-981-33-4389-4_57
Ansori, H., Fajriah, N., & Suryaningsih, Y. (2021). Teori Peluang. Jurusan Pendidikan Matematika FKIP ULM. https://repo-dosen.ulm.ac.id//handle/123456789/23100
Anugrawati, S. D. (2022). Aplikasi Model Kerugian Agregat dan Teori Kebangkrutan (Ruin Theory) Dalam Penentuan Peluang Kebangkrutan (Probability of Ruin). Jurnal MSA (Matematika Dan Statistika Serta Aplikasinya), 10(2), 73–78. https://doi.org/https://doi.org/10.24252/msa.v10i2.33821
Az-Zahroh, S. F., & Permadi, H. (2022). Analisis Kesalahan Mahasiswa dalam Menyelesaikan Soal Literasi Numerasi pada Materi Sebaran Geometrik dan Binomial Negatif. GAUSS: Jurnal Pendidikan Matematika, 5(2), 40–52. https://doi.org/10.30656/gauss.v5i2.5712
Biscarri, W., Zhao, S. D., & Brunner, R. J. (2018). A simple and fast method for computing the Poisson binomial distribution function. Computational Statistics & Data Analysis, 122, 92–100. https://doi.org/10.1016/j.csda.2018.01.007
Darwanto, D., & Dinata, K. B. (2021). Pengantar Teori Peluang. UMKO Publishing. http://repository.umko.ac.id/
Fischer, S. (2019). An Analytical Portfolio Credit Risk Model Based on the Extended Binomial Distribution. Journal of Financial Risk Management, 08(03), 177–191. https://doi.org/10.4236/jfrm.2019.83012
Garnadi, A. D., & Indonesia, P. A. (2018). Pengantar Teori Peluang untuk Aktuaris. Center for Open Science. https://doi.org/10.31219/osf.io/dnf6k
Hadi, S., Gunawan, I., & DALLE, J. (2018). Statistika Inferensial Teori dan Aplikasinya. Universitas Lambung Mangkurat.
Istiqomah, I. (2016). Penerapan Teorema Binomial Untuk Menentukan Peluang Kejadian (Kasus :Percobaan Pelemparan Koin Tak Seimbang). Science Tech: Jurnal Ilmu Pengetahuan Dan Teknologi, 2(2), 61–69. https://doi.org/10.30738/jst.v2i2.380

Lumbantoruan, J. H. (2019). Buku Materi Pembelajaran Teori Peluang dan Kombinatorika.
Miasary, S. D. (2022). Analisis Jumlah Klaim Agregasi Berdistribusi Negative Binomial Dan Besar Klaim Berdistribusi Discreate Uniform Dengan Menggunakan Metode Konvolusi. Journal of Mathematics : Theory and Application, 4(2), 50–56. https://doi.org/10.31605/jomta.v4i2.2010
Nasrulloh, M. F. (2020). Penerapan Problem Based Learning ditinjau dari Prestasi Belajar Mahasiswa Pendidikan Matematika Mata Kuliah Statistika Probabilitas. EDUSCOPE: Jurnal Pendidikan, Pembelajaran, Dan Teknologi, 5(2), 10–17. https://doi.org/https://doi.org/10.32764/eduscope.v5i2.763
Noeryanti, N. (2021). Pengantar Teori Probabilitas. AKPRIND PRESS.
Nurhusain, M., & Hadi, A. (2021). Desain Pembelajaran Statistika Terapan Berbasis Kasus Berkualitas Baik (Valid, Praktis, dan Efektif) untuk Mahasiswa Pendidikan Matematika. Indonesian Journal of Educational Science (IJES), 3(2), 105–119. https://doi.org/10.31605/ijes.v3i2.951
Purnama, A., Wijaya, T. T., Dewi, S. N., & Zulfah, Z. (2020). Analisis Buku Siswa Matematika SMA dari Indonesia dan China Pada Materi Peluang dan Statistik. Jurnal Cendekia : Jurnal Pendidikan Matematika, 4(2), 813–822. https://doi.org/10.31004/cendekia.v4i2.305
Qi, Y., Lai, J., Li, Y., & Tian, Q. (2017). An Algorithm for Calculating Collision Probability of Spacecraft and Short-term Debris Cloud Based on Binomial Distribution. Proceedings of the 2nd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2017), 133–138. https://doi.org/10.2991/icmeit-17.2017.26
Rhomdani, R. W. (2022). Algoritma Modulo Berpangkat Menggunakan Teorema Binomial Newton Dan Phi Euler Dengan Javascript. Teorema: Teori Dan Riset Matematika, 7(2), 403. https://doi.org/10.25157/teorema.v7i2.7707
Sadli, M., Alwi, W., & Nurman, T. A. (2017). Aplikasi teorema binomial newton pada perhitungan bilangan pecahan radikal. Jurnal MSA (Matematika Dan Statistika Serta Aplikasinya), 5(2), 23. https://doi.org/https://doi.org/10.24252/msa.v5i2.4506
Silverman, D. (2020). Qualitative research. Qualitative Research, 1–520.
Sirbiladze, G., Kacprzyk, J., Manjafarashvili, T., Midodashvili, B., & Matsaberidze, B. (2022). New Fuzzy Extensions on Binomial Distribution. Axioms, 11(5), 220. https://doi.org/10.3390/axioms11050220
Skarbek, D. (2020). Qualitative research methods for institutional analysis. Journal of Institutional Economics, 16(4), 409–422. https://doi.org/10.1017/S174413741900078X
Sneyd, J., Fewster, R. M., & McGillivray, D. (2022). Binomial distribution. In Mathematics and Statistics for Science (pp. 561–582). Springer International Publishing. https://doi.org/10.1007/978-3-031-05318-4_29
Sumarminingsih, E., & Astutik, S. (2021). Pengantar Teori Peluang. Universitas Brawijaya Press.
Tutelman, P. R., & Webster, F. (2020). Qualitative research and pain: Current controversies and future directions. Canadian Journal of Pain, 4(3), 1–5. https://doi.org/10.1080/24740527.2020.1809201